Team:Heidelberg LSL/Project Summary
From 2012hs.igem.org
Line 71: | Line 71: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The system still has to be optimized for real life application. Therefore, it has to be adapted to the sensitivity of mammalian cells towards UV-induced DNA damage. Among other things this would include optimization of the bacterial container which might absorb a certain amount of UV radiation. | |
<br/> | <br/> | ||
- | + | At the moment we have to add X-Gal after the exposure to UV, because UV-radiation may degrade X-Gal. But when producing locked vial, X-Gal cannot added additional. Therefore we have to find by researching different ways to deal with X-Gal. | |
- | + | ||
Furthermore we have to take account of the use of suncream in connection with our iGEMs, because suncream delays the effect of UV-light. | Furthermore we have to take account of the use of suncream in connection with our iGEMs, because suncream delays the effect of UV-light. | ||
We are optimistic that we can find solutions to all problems and develop our project to a industrial standard. | We are optimistic that we can find solutions to all problems and develop our project to a industrial standard. |
Revision as of 02:52, 17 June 2012
Italic text
Summary & Outlook
Lying in the sun we now have time to recover and think about the past weeks…
Summary
After a long phase of planning and development, we sucessfully developed a new biological system in E.coli that reacts quantitatively to UV-radiation in both artificial, and natural doses of radiation.
All of our promoters, precA, precB and psulA, which are linked with the SOS-response, reacted reliably to UV-induced damages and started expression of our reporter genes GFP and LacZ. All combinations such as precA_LacZ, precA_GFP, precB_LacZ, psulA_LacZ and psulA_GFP worked regarding quantitative UV-detection, which is an unexpected success. Outdoor tests with our lacZ-reporter constructs in sunlight and in shade indicated a light-dependent color change which is visible even to the naked eye. The color of the exposed bacterial suspension changed in the course of irradiation time from light-yellow to a dark greenish blue. This color change is a result of the UV-induced expression of the enzyme beta-galactosidase which catalyzes the reaction of X-Gal to a blue product. With our test series, we furthermore discovered significant differences in the strength of UV-detection between rec- and sulA-promotors. precA_LacZ constructs for instance showed less visible color change after 8 minutes of sun exposure than psulA_LacZ constructs.
These successful real-life tests emphasize the possibility to use our biological systems in a real applicational context such as our iGEM-jewelry collection.
After these successful constructions and tests we began to carefully characterize our new biological systems and submitted four new entries to the parts registry. To make this important contribution to the synthetic biology community and to the partsregistry, we adjusted our constructs to the official requirements of the partsregistry such as cloning it into the pSB1C3 plasmid backbone with the required pre- and suffix. Our new three parts are precA_LacZ, precB_LacZ and psulA_LacZ. Additionally, we looked up, ordered, tested and registered the sequence of the recB- promotor, which was not yet available in the registry. First tests showed that UV-induced activity of precB can be compared with those of precA.
With this unpredictable success, we are able to embed this new and innovative UV-detection system in a fancy application: iGEMS. iGEMS are small tubes filled with bacterial suspension and integrated into trendy necklaces and bracelets. We developed this fictitious product in order to raise the public awareness of the “invisible danger”, to encourage curiosity. With the establishment of a virtual ‘Online Shop’ we tried to put genetically modified organisms in a modern context and give people a better understanding of synthetic biology.
For us, personally, the project broadened our scientific horizon and gave us the opportunity to learn how to work scientifically. We had a great time together and look forward to present our work to you at the Jamboree 2012.
Outlook
In the past few months, the project was brought up to a great level. We have constructed different BioBricks which were sent to the partsregistry, tested our parts and designed a jewelry collection. But, nevertheless, we have encountered difficulties that could be optimized in the future.
We have worked with enthusiasm on the bacterial tool kit which can detect UV-radiation and have made a lot of progress, therefore we want to continue working on it.
In the future we want to create a clearer characterization of different members of the same gene family as precA. Our assumption is that DNA damage leads to the successive activation of the different rec genes are activated dependent on the UV radiation dose. By implementing also these genes we want to generate a more gradual UV-response. The successive induction of the different rec promoters could help to determine the exact amount of radiation. This is important to provide the bacterial tool kit with the properties of a dosimeter. We started testing precB and preC. PreB lead to a positive result, whereas induction of preC did not result in the generation of the reporter. Cloning of this part will be repeated.
For the iGEM competition we only tested our constructs by exposing the samples to UV light. We have not analyzed whether the construct would also work with radioactive radiation. Radioactive radiation causes DNA damage different from UV-induced DNA damage, therefore it is not for sure whether precA is activated in the same way as with UV radiation. In principle, we assume that the induction by radioactive radiation would work because the recA promoter is known to be activated by the induced damage. We could not test our constructs with radioactive radiation, because we did not have the right equipment.
We also want to include the constructs with a GFP reporter instead of LacZ in our iGEMS collection. GFP cannot be seen by a color change of the bacterial suspension and normally you need further detection systems for GFP, because it has to be excited by a specific wavelength. To overcome this challenge, we want to combine the iGEMS with LED lamps. LEDs emit light of a certain wavelength, e.g. blue light with 460 nm which is the excitation wavelength of GFP. Therefore, we can make GFP visible using blue LEDs. Furthermore, we could also develop a construct with dtTomato, a very light, red-orange fluorescent protein, as another reporter. By using different fluorescent reporters we could generate a color range from green to orange to red with just one single blue LED.
The system still has to be optimized for real life application. Therefore, it has to be adapted to the sensitivity of mammalian cells towards UV-induced DNA damage. Among other things this would include optimization of the bacterial container which might absorb a certain amount of UV radiation.
At the moment we have to add X-Gal after the exposure to UV, because UV-radiation may degrade X-Gal. But when producing locked vial, X-Gal cannot added additional. Therefore we have to find by researching different ways to deal with X-Gal.
Furthermore we have to take account of the use of suncream in connection with our iGEMs, because suncream delays the effect of UV-light.
We are optimistic that we can find solutions to all problems and develop our project to a industrial standard.
Our project comprises a novel idea and opens up new perspectives, especially in Human Practices. The integration of the bacteria into jewelry represents a completely new and consumer-friendly solution to give the public an understanding of synthetic biology.
We found an easy way for everyone to protect themselves from sunburn. The method to use dosimeters is old-fashioned, complicated and expensive. Lying on the beach, nobody uses dosimeters because they are too big and uncomfortable. Not only do our fancy iGEMS warn people of too intense UV-radiation but also are trendy accessories! People who wear our iGEMS are aware of the invisible danger and encourage other people to follow this upcoming trend.
In cooperation with the biotechnological companies and the jewelry industry we could develop a new branch of sustainable applications for biological systems.
We are looking forward to the iGem HS Jamboree 2012 and present our work to the other teams from all over the world. We hope to get in contact with other biology interested pupils and present them our iGEMS.
Achievements
Three different UV-Sensor parts constructed and submitted to the registry | |
All parts were characterized carefully and show a UV-dose-dependent color-production | |
Outdoor-Test shows our parts to be working in a real application context | |
Human Practices - consumer product development for raising the public awareness of the “invisible danger” and presenting our project in an easy-to-understand way | |
Finally, we learned a lot about synthetic biology, laboratory methods and had a great time working together on our project, and are now looking forward to meeting the other teams at the iGEM HS Jamboree! |