Team:Sharon MA Aquila/Notebook
From 2012hs.igem.org
Line 307: | Line 307: | ||
<div id="block-content"> | <div id="block-content"> | ||
</div><!--end block-content-->'''March 13:''' After looking through old iGEM projects for inspiration, we stumbled upon a [https://2011.igem.org/Team:KULeuven/Description project] dealing with antifreeze protein (AFP) production. We began brainstorming possible applications of this protein, which prevents ice crystal formation in certain fish, plants, fungi, and bacteria. We discussed using AFP on roads, but after researching activation methods for road-thawing bacteria, we determined that we would have to introduce another material (arabinose, lactose, etc.) in order for our bacteria to begin producing the protein. Briefly, we researched cold activation methods, before determining that these methods were generally difficult to implement and only operational at temperatures above zero - not to mention that bacteria are usually nonfunctional below freezing. | </div><!--end block-content-->'''March 13:''' After looking through old iGEM projects for inspiration, we stumbled upon a [https://2011.igem.org/Team:KULeuven/Description project] dealing with antifreeze protein (AFP) production. We began brainstorming possible applications of this protein, which prevents ice crystal formation in certain fish, plants, fungi, and bacteria. We discussed using AFP on roads, but after researching activation methods for road-thawing bacteria, we determined that we would have to introduce another material (arabinose, lactose, etc.) in order for our bacteria to begin producing the protein. Briefly, we researched cold activation methods, before determining that these methods were generally difficult to implement and only operational at temperatures above zero - not to mention that bacteria are usually nonfunctional below freezing. | ||
- | + | <br> | |
'''March 20:''' After some discussion with Mr. Dixon and among the group members, we decided to take an idea from the [https://2008.igem.org/Team:MIT 2008 MIT iGEM team], who created teeth-cleaning bacteria by transforming the bacteria used for yogurt cultures. We decided it might be a good idea to introduce the AFP gene into one of the yogurt bacteria, which would already be present in the food we were trying to affect. We additionally decided that the gene should be activated by lactose, because it was already present in the yogurt and because the bacteria already reacted to it to produce lactic acid. | '''March 20:''' After some discussion with Mr. Dixon and among the group members, we decided to take an idea from the [https://2008.igem.org/Team:MIT 2008 MIT iGEM team], who created teeth-cleaning bacteria by transforming the bacteria used for yogurt cultures. We decided it might be a good idea to introduce the AFP gene into one of the yogurt bacteria, which would already be present in the food we were trying to affect. We additionally decided that the gene should be activated by lactose, because it was already present in the yogurt and because the bacteria already reacted to it to produce lactic acid. | ||
<br> | <br> | ||
After researching the two bacteria present in yogurt cultures, ''Lactobacillus delbrueckii'' subsp. ''bulgaricus'' and ''Streptococcus salivarius'' subsp. ''thermophilus'', we determined that the former is more suitable for our experiment, because it generally remains in the yogurt following yogurt production - and because the MIT team wiki had detailed [https://2008.igem.org/Team:MIT/Experiments protocols] regarding transformation of ''Lactobacillus bulgaricus'' bacteria. | After researching the two bacteria present in yogurt cultures, ''Lactobacillus delbrueckii'' subsp. ''bulgaricus'' and ''Streptococcus salivarius'' subsp. ''thermophilus'', we determined that the former is more suitable for our experiment, because it generally remains in the yogurt following yogurt production - and because the MIT team wiki had detailed [https://2008.igem.org/Team:MIT/Experiments protocols] regarding transformation of ''Lactobacillus bulgaricus'' bacteria. | ||
<forum_subtle /> | <forum_subtle /> |
Revision as of 23:35, 20 March 2012
March 20: After some discussion with Mr. Dixon and among the group members, we decided to take an idea from the 2008 MIT iGEM team, who created teeth-cleaning bacteria by transforming the bacteria used for yogurt cultures. We decided it might be a good idea to introduce the AFP gene into one of the yogurt bacteria, which would already be present in the food we were trying to affect. We additionally decided that the gene should be activated by lactose, because it was already present in the yogurt and because the bacteria already reacted to it to produce lactic acid.
After researching the two bacteria present in yogurt cultures, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus, we determined that the former is more suitable for our experiment, because it generally remains in the yogurt following yogurt production - and because the MIT team wiki had detailed protocols regarding transformation of Lactobacillus bulgaricus bacteria.